Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose theVortexParticleFlowMap (VPFM) method to simulate incompressible flow with complex vortical evolution in the presence of dynamic solid boundaries. The core insight of our approach is that vorticity is an ideal quantity for evolution on particle flow maps, enabling significantly longer flow map distances compared to other fluid quantities like velocity or impulse. To achieve this goal, we developed a hybrid Eulerian-Lagrangian representation that evolves vorticity and flow map quantities on vortex particles, while reconstructing velocity on a background grid. The method integrates three key components: (1) a vorticity-based particle flow map framework, (2) an accurate Hessian evolution scheme on particles, and (3) a solid boundary treatment for no-through and no-slip conditions in VPFM. These components collectively allow a substantially longer flow map length (3–12times longer) than the state-of-the-art, enhancing vorticity preservation over extended spatiotemporal domains. We validated the performance of VPFM through diverse simulations, demonstrating its effectiveness in capturing complex vortex dynamics and turbulence phenomena.more » « lessFree, publicly-accessible full text available August 1, 2026
-
This paper presents a unified compressible flow map framework designed to accommodate diverse compressible flow systems, including high-Mach-number flows (e.g., shock waves and supersonic aircraft), weakly compressible systems (e.g., smoke plumes and ink diffusion), and incompressible systems evolving through compressible acoustic quantities (e.g., free-surface shallow water). At the core of our approach is a theoretical foundation for compressible flow maps based on Lagrangian path integrals, a novel advection scheme for the conservative transport of density and energy, and a unified numerical framework for solving compressible flows with varying pressure treatments. We validate our method across three representative compressible flow systems, characterized by varying fluid morphologies, governing equations, and compressibility levels, demonstrating its ability to preserve and evolve spatiotemporal features such as vortical structures and wave interactions governed by different flow physics. Our results highlight a wide range of novel phenomena, from ink torus breakup to delta wing tail vortices and vortex shedding on free surfaces, significantly expanding the range of fluid systems that flow-map methods can handle.more » « lessFree, publicly-accessible full text available August 1, 2026
-
We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.more » « less
-
We propose a novel solid-fluid interaction method for coupling elastic solids with impulse flow maps. Our key idea is to unify the representation of fluid and solid components as particle flow maps with different lengths and dynamics. The solid-fluid coupling is enabled by implementing two novel mechanisms: first, we developed an impulse-to-velocity transfer mechanism to unify the exchanged physical quantities; second, we devised a particle path integral mechanism to accumulate coupling forces along each flow-map trajectory. Our framework integrates these two mechanisms into an Eulerian-Lagrangian impulse fluid simulator to accommodate traditional coupling models, exemplified by the Material Point Method (MPM) and Immersed Boundary Method (IBM), within a particle flow map framework. We demonstrate our method's efficacy by simulating solid-fluid interactions exhibiting strong vortical dynamics, including various vortex shedding and interaction examples across swimming, falling, breezing, and combustion.more » « less
-
We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow.more » « less
-
We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations forline elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulsem, which has been recently bridged with flow maps to encouraging results, vorticityωpromises to be preferable for its numerical stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions.more » « less
-
null (Ed.)Abstract Although using machine learning techniques to solve computer security challenges is not a new idea, the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security community. This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning techniques to solve computer security challenges. In particular, the review covers eight computer security problems being solved by applications of Deep Learning: security-oriented program analysis, defending return-oriented programming (ROP) attacks, achieving control-flow integrity (CFI), defending network attacks, malware classification, system-event-based anomaly detection, memory forensics, and fuzzing for software security.more » « less
An official website of the United States government
